Expression of the amino acid transporter ATB 0+ in lung: possible role in luminal protein removal.

نویسندگان

  • Jennifer L Sloan
  • Barbara R Grubb
  • Sela Mager
چکیده

Normal lung function requires transepithelial clearance of luminal proteins; however, little is known about the molecular mechanisms of protein transport. Protein degradation followed by transport of peptides and amino acids may play an important role in this process. We previously cloned and functionally characterized the neutral and cationic amino acid transporter ATB(0+) and showed expression in the lung by mRNA analysis. In this study, the tissue distribution, subcellular localization, and function of the transporter in native tissue were investigated. Western blots showed expression of the ATB(0+) protein in mouse lung, stomach, colon, testis, blastocysts, and human lung. Immunohistochemistry revealed that ATB(0+) is predominantly expressed on the apical membrane of ciliated epithelial cells throughout mouse airways from trachea to bronchioles and in alveolar type I cells. Electrical measurements from mouse trachea preparations showed Na(+)- and Cl(-)-dependent, amino acid-induced short-circuit current consistent with the properties of ATB(0+). We hypothesize that, by removing amino acids from the airway lumen, the transporter contributes to protein clearance and, by maintaining a low nutrient environment, plays a role in lung defense.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport of amino acid-based prodrugs by the Na+- and Cl(-) -coupled amino acid transporter ATB0,+ and expression of the transporter in tissues amenable for drug delivery.

We evaluated the potential of the Na(+)- and Cl(-)-coupled amino acid transporter ATB(0,+) as a delivery system for amino acid-based prodrugs. Immunofluorescence analysis indicated that ATB(0,+) is expressed abundantly on the luminal surface of cells lining the lumen of the large intestine and the airways of the lung and in various ocular tissues, including the conjunctival epithelium, the tiss...

متن کامل

Transport of butyryl-L-carnitine, a potential prodrug, via the carnitine transporter OCTN2 and the amino acid transporter ATB(0,+).

L-carnitine is absorbed in the intestinal tract via the carnitine transporter OCTN2 and the amino acid transporter ATB(0,+). Loss-of-function mutations in OCTN2 may be associated with inflammatory bowel disease (IBD), suggesting a role for carnitine in intestinal/colonic health. In contrast, ATB(0,+) is upregulated in bowel inflammation. Butyrate, a bacterial fermentation product, is beneficial...

متن کامل

Molecular and functional analysis of glutamine uptake in human hepatoma and liver-derived cells.

Human hepatoma cells take up glutamine at rates severalfold faster than the system N-mediated transport rates observed in normal human hepatocytes. Amino acid inhibition, kinetic, Northern blotting, RT-PCR, and restriction enzyme analyses collectively identified the transporter responsible in six human hepatoma cell lines as amino acid transporter B(0) (ATB(0)), the human ortholog of rodent ASC...

متن کامل

Conjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise

Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...

متن کامل

Inducible antisense RNA targeting amino acid transporter ATB0/ASCT2 elicits apoptosis in human hepatoma cells.

Amino acid transporter B(0)/ASC transporter 2 (ATB(0)/ASCT2) is responsible for most glutamine uptake in human hepatoma cells. Because this transporter is not expressed in normal hepatocytes, we hypothesized that its expression is necessary for growth of human liver cancer cells. To test this hypothesis, Sloan Kettering hepatoma (SK-Hep) cells were stably transfected with an inducible 1.3-kb AT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 284 1  شماره 

صفحات  -

تاریخ انتشار 2003